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Abstract 

Background:  Neonicotinoids (NN) are selective neurotoxic pesticides that bind to insect but also mammal nicotinic 
acetycholine receptors (nAChRs). As the most widely used class of insecticides worldwide, they are ubiquitously found 
in the environment, wildlife, and foods, and thus of special concern for their impacts on the environment and human 
health. nAChRs are vital to proper brain organization during the prenatal period and play important roles in various 
motor, emotional, and cognitive functions. Little is known on children’s contamination by NN. In a pilot study we 
tested the hypothesis that children’s cerebro-spinal fluid (CSF) can be contaminated by NN.

Methods:  NN were analysed in leftover CSF, blood, and urine samples from children treated for leukaemias and 
lymphomas and undergoing therapeutic lumbar punctions. We monitored all neonicotinoids approved on the global 
market and some of their most common metabolites by ultra-high performance liquid chromatography-tandem 
mass spectrometry.

Results:  From August to December 2020, 14 children were consecutively included in the study. Median age was 
8 years (range 3–18). All CSF and plasma samples were positive for at least one NN. Nine (64%) CSF samples and 13 
(93%) plasma samples contained more than one NN. Thirteen (93%) CSF samples had N-desmethyl-acetamiprid 
(median concentration 0.0123, range 0.0024–0.1068 ng/mL), the major metabolite of acetamiprid. All but one urine 
samples were positive for ≥ one NN. A statistically significant linear relationship was found between plasma/urine and 
CSF N-desmethyl-acetamiprid concentrations.

Conclusions:  We have developed a reliable analytical method that revealed multiple NN and/or their metabolites in 
children’s CSF, plasma, and urine. Our data suggest that contamination by multiple NN is not only an environmental 
hazard for non-target insects such as bees but also potentially for children.
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Background
In 2017, United Nations rapporteurs called for a new 
global treaty to regulate and phase out the use of haz-
ardous pesticides in farming as chronic exposure to 

pesticides had been linked to various neurological disor-
ders. Pregnant women, foetuses, and children were also 
considered as particularly vulnerable [1].

Residential, household or parental exposures to pes-
ticides have been associated with young adult brain 
tumors, respectively childhood leukemia and paediatric 
non-central nervous system solid tumors [2–5].

Among pesticides, neonicotinoids (NN), which are 
selectively neurotoxic and bind to nicotinic acetycho-
line receptors (nAChRs), are of special concern for their 
impacts on the environment and human health since they 
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are the most widely used class of insecticides worldwide 
[6] and are ubiquitously found in the environment [7], 
wildlife [8], and various foods [9, 10]. NN use has been 
restricted in some part of the world due to their signifi-
cant toxicity to non-target insects such as bees [11].

In mammals, nAChRs are vital to proper brain organ-
ization during the prenatal period [12]. In addition, 
they play important roles in various motor, emotional, 
and cognitive functions [12–14]. Little is known on the 
effect of chronic human low-level exposure to nAChRs’ 
disrupters such as NN, which, especially in human foe-
tuses’ and children’s developing brains, could potentially 
lead to later cerebral dysfunctions. In humans, NN have 
been associated with small-for-gestational-age neonates, 
congenital malformations, autism spectrum disorder, 
memory loss and finger tremor [15–19]. NN toxicologi-
cal studies in rodents or mammals/human cell-lines have 
been shown to be cytotoxic, genotoxic, hepatotoxic, hae-
matotoxic, nephrotoxic and potentially immunotoxic 
[20–23]. Among pesticides, NN definitely represent a 
potential significant public-health risk.

Data on NN distribution and metabolism in humans 
are scarce [24]. There are very few studies in children: six 
publications on NN urinary levels [19, 25–29] and one 
study on NN hair concentrations (6–83 years old people, 
of whom 28 were < 16 years) [30]. In China, NN residues 
in urine were found in 81% of 289 seven to 11 year old 
school children [29] and in 100% of 324 tested donors 
of all ages (1–97 years, 111 children < 18 years) [25]. In 
Japan, urinary N-desmethyl-acetamiprid (Desm-ACT) 
was detected in 14/57 (24·6%) very low birth weight 
infants within 48 h of birth [19]. This level of prevalence 
is worrying and calls for studies on other body compart-
ments and on potential health impacts. There are no data 
on direct human brain exposure to NN and there is only 
one report on NN detection in human cerebrospinal fluid 
(CSF), in a post mortem of a male adult after voluntary 
and fatal imidacloprid ingestion [31]. Assessing NN pres-
ence in children’s brain tissue is ethically complicated 
and, currently, the best available surrogate for brain envi-
ronment is CSF [32].

The general aims of this pilot study were to develop 
an analytical protocol to measure NN in children’s CSF 
and to assess if NN are present in children’s CSF. Our 
hypothesis was that NN could be found in children’s CSF, 
thereby representing a potential central nervous system 
(CNS) exposure.

Methods
In a prospective paediatric observational study in Swit-
zerland, we conducted a comparative analysis of CSF, 
blood and urine to develop and test the analytical method 

and compare the measured concentrations in these three 
body fluids.

Patients and procedures
To study children’s CSF in an ethically acceptable way, we 
included, as a convenience sample, children with onco-
logic disease whose CSF had to be removed for clinical 
reasons in large enough volumes to allow aliquots to be 
collected for research purposes. All children were diag-
nosed and treated at the Department of paediatrics, Laus-
anne University Hospital, where they were consecutively 
included between August and December 2020. After 
initial diagnostic procedures, all children (0–18 years) 
presenting acute lymphoblastic (ALL), myeloblastic 
(AML) leukaemia or non-Hodgkin lymphoma (NHL) 
and were planned to receive routine intrathecal chemo-
therapy were approached and included in the study after 
informed consent was obtained. Intrathecal treatments 
consisted in removing up to 8 mL of CSF by lumbar tap 
under conscious sedation or anaesthesia before injecting 
8–15 mL of various chemotherapeutic agents; two mL of 
CSF was reserved for routine chemical, biological, and 
cytological investigations and 2 mL of the leftover CSF 
was collected for NN analysis. On the same occasion, 
blood was drawn for clinical purposes from a subcutane-
ous implantable device. From the four mL drawn to rinse 
the device (internal volume ≤ 1.7 mL), the first 2 mL were 
discarded, and the following 2 mL were kept (3.2% Citrate 
S-Monovette®, Sarstedt AG, Sevelen Switzerland) for NN 
analysis. The patient also voided freely a 5–10 mL aliquot 
of urine in a clean tube. CSF and urine were initially kept 
in 15 mL polypropylene tubes. All samples were centri-
fuged, to collect plasma from the blood samples and to 
remove sediments from the CSF and urine samples. The 
supernatants were stored at − 80 °C.

NN analysis
Aliquots of 0.2 mL of CSF, plasma or urine were placed 
into 2.0 mL microcentrifuge tubes, to which 580 μL of 
acetonitrile and 20 μL of a solution of isotopically labelled 
internal standards (IS) were added. The IS solution con-
tained acetamiprid-d3 (CDN Isotopes, Pointe-Claire, 
Canada), clothianidin-d3 (CDN Isotopes), thiameth-
oxam-d4 (CDN Isotopes), thiacloprid-d4 (CDN Iso-
topes), imidacloprid-d4 (CDN Isotopes), dinotefuran-d3 
(EQ Laboratories, Augsburg, Germany), and nitempy-
ram-13C-d3 (Alsachim, Illkirch-Graffenstaden, France) 
at a concentration of 50 ng/mL in acetonitrile. The mix-
ture was swiftly vortexed and ultrasonicated to precipi-
tate proteins. After centrifugation, the supernatant was 
partially evaporated to a volume of ca. 50–100 μL, diluted 
with 950 μL of a 2% formic acid solution in water and 
submitted to a purification procedure using solid-phase 
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extraction (SPE) cartridges. The SPE cartridge was first 
conditioned with 1 mL of methanol, equilibrated with 
1 mL of 2% formic acid, loaded with the sample, washed 
with 1 mL of 0.1% formic acid and finally eluted with 
1 mL of methanol. The fraction was evaporated to dry-
ness and reconstituted in 200 μL of methanol 25% in 
water, ultrasonicated, centrifuged, and filtered through 
13 mm hydrophilic PTFE filters. A 2.5 μL of the result-
ing extract was injected into an ultra-high performance 
liquid chromatography-tandem mass spectrometry 
(UHPLC-MS/MS) system composed of an Acquity UPLC 
I-Class and a TQ-XS triple quadrupole (Waters, Mil-
ford, MA). NN were detected and quantified according 
to Kammoun and colleagues34. All neonicotinoids and 
related insecticides approved on the global market and 
their most commonly detected metabolites were tar-
geted: acetamiprid, clothianidin, thiamethoxam, thiaclo-
prid, imidacloprid, dinotefuran, nitempyram, sulfoxaflor, 
flupyradifurone, Desm-ACT, imidacloprid-olefin (IMI-
olefin), desnitro-imidacloprid (IMI-NH), and 6-chloroni-
cotinic acid (6-CAN). The column used for the separation 
was an Acquity UPLC HSS T3 (2.1x100mm, Waters). 
Mobiles phases were milli-Q water + 0.05% formic acid 
+ 1 mM ammonium formate (phase A) and acetonitrile 
+ 0.05% formic acid (phase B). The gradient program 
started at 0% phase B and increased linearly to 37.5% in 
7.5 min, followed by a rapid increase to 100% B in 0.5 min, 
wash at 100% B for 2 min and reequilibration at 0% B for 
4 min. The MS source conditions were identical to those 
presented in Kammoun and colleagues [33] except that 
the MS was operated in both electrospray positive and 
negative ionization using a 20 ms polarity switching time. 
Neonicotinoids were monitored based on the multiple 
reaction monitoring (MRM) mode. Compound-depend-
ent parameters are presented in supplementary Table 1.

Method validation
The performances of the method in terms of precision 
(expressed as % relative standard deviation (RSD)) and 
accuracy (expressed in %) were evaluated by spiking a 
known amount of NN in the different matrices before 
sample preparation (final concentration of 1 ng/mL, 
n = 4 for each matrix). We could not perform validation 
at multiple concentrations due to too restricted sam-
ple availability. Coefficients of variations (%RSD) were 
below 10% for all analytes and accuracies always ranged 
between 80 and 110% except for desnitro-imidacloprid in 
CSF and imidacloprid-olefin in plasma for which lower 
but still acceptable accuracy values of 74.1 and 67.1%, 
respectively, were obtained (supplementary Table 2). The 
response function was established using 6-point calibra-
tion curves ranging between 0.005 and 10 ng/mL. Linear 
or quadratic curves weighted by 1/x were applied. Limits 

of quantification (LOQs) were evaluated as the concen-
trations giving signal-to-noise ratios of 10 in spiked sam-
ples. The method LOQs in CSF ranged between 1 and 
20 pg/mL for all substances except 6-CAN for which the 
LOQ was 200 pg/mL. Plasma LOQs were similar to CSF’s 
but urine LOQs were generally higher due to increased 
background noise and matrix effects (supplementary 
Table  2). The specificity was determined by measuring 
blank solutions submitted to the entire preparation as 
well as spiked samples.

Total CSF protein content
The total CSF protein concentration was measured using 
a pyrogallol red-based colorimetric assay (Randox Labo-
ratories, Crumlin, UK) on a Cobas 8000® modular ana-
lyzer (Roche Diagnostics, Rotkreuz, Switzerland).

Specific gravity
Urinary concentrations can vary widely over the period 
of elimination of xenobiotics and largely depend on fluid 
intake. The two most common methods for correction 
of metabolite concentrations in urine are the measure of 
specific gravity and that of creatinine [34]. The specific 
gravity of urine samples was measured using a digital 
Atago PEN urine specific gravity refractometer (Tokyo, 
Japan). In brief, an aliquot of urine (0.2 mL) was placed 
on a microscope slide and the pen tip put horizontally on 
the slide for about 2 seconds until the measurement was 
done.

Statistical analyses
Statistical analyses were carried out in R statistical soft-
ware [35]. To assess the relationship between NN con-
centration is CSF and plasma or urine, we first selected 
NNs for which the number of samples with a concen-
tration above LOQ was greater than 10. We then com-
puted the association between NN concentration in CSF 
vs plasma and CSF vs urine using standard OLS linear 
regressions. Regressions were built using the lm function 
from the stats package [36] through ggpubr [37]. We set 
alpha = 0.05 as threshold for any analysis.

As this pilot study was only meant to test the feasibil-
ity of the NN measurements in children’s CSF, the only 
patient’s characteristics that were obtained were genders 
and ages and they were not considered as relevant con-
founding factors from a medical standpoint.

The study was approved by our local Institutional 
Review Board (Commission cantonale d’éthique de la 
recherche sur l’être humain, CER-VD). All teenagers/par-
ents gave their written consent.
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Results
Over a 4 months period, 14 children with ALL (n = 9) 
or AML (n  = 2) or NHL (n  = 3) were consecutively 
included. M/F ratio was 1.0, median age 8 years (range 
3–18). All CSF total protein contents were within insti-
tutional normal ranges (150–450 mg/l).

All CSF presented detectable levels of at least one NN 
(Desm-ACT in 14/14, sulfoxaflor in 7/14, thiameth-
oxam in 6/14, and imidacloprid 2/14) (see Table  1 or 
supplementary Table  3 for detailed results). Five CSF 
contained a single NN (all with Desm-ACT), three 
contained two (two with Desm-ACT and sulfoxaflor 
and one with Desm-ACT and thiamethoxam), and six 
contained three (four with Desm-ACT, sulfoxaflor and 
thiamethoxam, one with Desm-ACT, sulfoxaflor and 
thiamethoxam and one with Desm-ACT, sulfoxaflor 
and imidacloprid). Thirteen out of 14 CSF had quan-
tifiable levels of Desm-ACT (median concentration 
0.0123, range 0.0024–0.1068 ng/mL). Four out of 14 
CSF had quantifiable levels of sulfoxaflor (median con-
centration 0.0053, range 0.0024–0.0124 ng/mL). Three 
out of 14 CSF had quantifiable levels of thiamethoxam 
(median concentration 0.0196, range 0.0054–0.0765 ng/
mL). One out of 14 CSF had quantifiable level of imi-
dacloprid (0.0153 ng/mL). All plasma samples were 
positive for at least one NN: one with only thiameth-
oxam, six with two (three with sulfoxaflor and Desm-
ACT, two with imidacloprid and Desm-ACT, one with 
thiamethoxam and Desm-ACT), five with three (two 
with thiametoxam, sulfoxaflor and Desm-ACT, two 
with thiametoxam, imidacloprid and Desm-ACT, one 
with imidacloprid, sulfoxaflor and Desm-ACT) and 
two with four (both with thiamethoxam, imidacloprid, 
sulfoxaflor and Desm-ACT). Thirteen out of 14 plasma 
samples had Desm-ACT (12 of which with quantifiable 
levels, median concentration 0.0213, range 0.0039–
0.1812 ng/mL). All but one urine samples were positive 
for at least one NN (seven with one, four with two, one 
with three and one with four). Thirteen out of 14 urines 
had Desm-ACT (median concentration 0.1925, range 
0.0378–6.774 ng/mL). Significant linear relationships 
were found between CSF and plasma/urine Desm-
ACT concentrations (see Fig.  1). Other NN did not 
meet the inclusion criteria of a minimum of 10 samples 
with a concentration above LOQ. One data point had 
a Cook distance greater than one in both models (CSF 
vs plasma and CSF vs urine), with a Desm-ACT con-
centration in urine greater than 6 ng/mL. We computed 
new models excluding this point that were very similar 
to the full ones, with the exception that the intercept 
became not significant. All models were significant. Full 
details on the models are presented in supplementary 

material (supplementary Figs.  1 and 2, supplementary 
Tables 4 and 5).

Discussion
Our study offers two new perspectives on paediatric pub-
lic-health research: First, it shows that NN detection in 
children CSF is technically feasible. Second, it reveals that 
multiple NN can contaminate children’s CSF and that, in 
the case of Desm ACT, plasma and - to a lesser extent - 
urine concentrations correlate with CSF concentrations.

To our knowledge, no study has reported a method for 
the analysis of low concentrations of NNs in human CSF 
and their comparison with those in plasma and urine 
from the same individuals. Thus, we first had to develop 
a reliable methodology to measure neonicotinoids and 
their metabolites in these human fluids. The use of very 
small left-over volumes (0.2 mL) alleviates the difficul-
ties related to CSF collection. However, starting from 
small sample volumes may have an impact on positive 
detection rates, which are often correlated to the method 
sensitivity [10]. Therefore, a sensitive analytical protocol 
able to detect traces of NN had to be developed. Using 
a combination of a two-step efficient clean-up (pro-
tein precipitation followed by solid-phase extraction) 
and state-of-the-art analysis, we were able to set quan-
tification limits in CSF and plasma ranging between 1 
and 20 pg/mL for all NN and their metabolites but one 
(6-CAN). In urine, LOQs generally ranged between 5 and 
50 pg/mL, which is comparable or better than those from 
recent studies that started from higher or similar volumes 
of urine [19, 27, 38, 39]. In accordance with previous 
paediatric studies, our work also shows the importance 
to monitor as many molecules as possible, including the 
metabolites of parent pesticides [19, 27, 28, 38]. Had we 
chosen not to measure Desm-ACT, 7/14 children’s CSF 
would have been free of any NN, thus falsely minimiz-
ing their degree of contamination by NN. In children, 
only four studies reported on urinary Desm-ACT median 
concentrations which ranged between 0.048 ng/mL and 
1.35 ng/mL [19, 27, 28, 38]. Our values (median con-
centration of 0.19 ng/mL) thus corroborate those found 
in earlier studies. We are not aware of any other studies 
on NN levels in paediatric body fluids. In 2021, Xu et al. 
reported on paired urine and blood NN profiles in 196 
healthy young adults from China. They found urinary 
and blood Desm-ACT median concentrations of 0.35 and 
0.58 ng/mL respectively, which are similar for urine but 
much higher for plasma than those found in our subjects 
(0.32 and 0.02 ng/mL, respectively) [40].

Our findings suggest that ALL, AML or NHL children 
living in Switzerland are exposed to multiple NN. Our 
study population was small and highly selected and is 
thus not representative of a large paediatric population, 
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with or without a haematological cancer. As no control 
population of healthy children was included, we could 
not analyse if these multiple exposures to NN were spe-
cific to children with leukaemia/lymphoma. As we did 
not study potential exposures to any dietary pesticides by 
food or residential proximity to NN treated crops/live-
stock/pets, we could not analyse if these multiple expo-
sures to NN were associated with increased individual 

environmental risks. The exposure to multiple NN in 
all included patients could represent the tip of the ice-
berg of a larger, but not analysed, exposure to pesticides. 
Although the Environmental Protection Agency has 
classified acetamiprid, clothianidin, dinotefuran, imida-
cloprid, and thiamethoxam as “Not Likely to be Carcino-
genic to Humans” [41], and whilst one could argue that 
chronic exposure in children is too short to raise risks of 

Fig. 1  Cerebro-spinal fluid versus plasma (A and C) or urine (B and D) N-desmethyl-acetamiprid concentrations (ng/ml) of 14 children with 
haematological cancers. CSF, cerebro-spinal fluid. A and B n = 14. C and D n = 13, point with Cook distance > 1 removed. Urine concentrations 
corrected for specific gravity
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secondary, non-genetic, cancers, exposures to pesticides 
- as a broad toxicological group - have been associated 
with children haematological cancer3,4 or CNS/non CNS 
solid tumors2,5. Such exposome outcomes to pesticides 
hazards have also recently been reported for neurodevel-
opmental issues [42].

To our knowledge, this is the first study on the pres-
ence of NN in humans’ CSF. Surprisingly, we observed 
remarkable differences in concentrations between aceta-
miprid and its metabolite Desm-ACT in CSF. We have 
found no data on absorption and distribution of NN and 
their metabolites in humans. Acetamiprid and Desm-
ACT are structurally very similar and have comparable 
hydrophobicity (calculated logP 1.4 and 1.2, respectively), 
thus they should theoretically be found in the same body 
compartments. While we cannot totally exclude a Desm-
ACT specific blood-to-CSF transfer, the observed dif-
ferences in concentrations may be better explained by a 
prolonged half-life of Desm-ACT compared to ACT in 
the context of low-dose chronic exposure, resulting in 
the detection of the former only. The normal CSF total 
protein concentrations in the 14 studied patients argues 
against a meningeal inflammation and, thus, against an 
increased blood-to-CSF permeability such as in bacterial 
meningitis [43].

Conclusions
Our work describes a reliable analytical procedure to 
measure NN in human CSF. Our data show that chil-
dren with ALL, AML and NHL living in Switzerland are 
exposed to multiple NN. They also show that Desm-ACT 
freely diffuses into children’s CSF and that other NN than 
Desm-ACT are to be found in childrens’ CSF. No data 
exist on human blood-to-brain NN transfer, via the BBB 
or CSF-to-brain trans-neuroependymal route. The lat-
ter’s ultrastructure and ontogeny [44] as well as the now 
established presence of NN in children’s CSF warrants 
caution about a potential direct effect of NN on the CNS. 
The vulnerability of the maturing brain to NN could lie in 
a potential chronic low-dose exposure during a very sus-
ceptible developmental period. Exposome medium-term 
studies, from foetal life to late childhood, similar to the 
Helix cohort [45], are needed to better delineate poten-
tial links between NN exposures and childhood cancers. 
Organophosphate pesticides were measured in two sub-
groups of the Helix cohort: it could be meaningful to add 
NN determination in the same samples. A larger study to 
collect more CSF/plasma/urine samples in children could 
yield more data on various NN levels in CSF/plasma/
urine to allow a sounder analysis of blood-to-CSF or 
urine-to-CSF NN levels ratio.

Abbreviations
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