
A Global Nucleic Acid Observatory for

Biodefense and Planetary Health

The Nucleic Acid Observatory Consortium1

1Nucleic.Acid.Observatory@gmail.com

Abstract

The spread of pandemic viruses and invasive species can be catastrophic for human societies and
natural ecosystems. SARS-CoV-2 demonstrated that the speed of our response is critical, as each day of delay
permitted exponential growth and dispersion of the virus. Here we propose a global Nucleic Acid
Observatory (NAO) to monitor the relative frequency of everything biological through comprehensive
metagenomic sequencing of waterways and wastewater. By searching for divergences from historical
baseline frequencies at sites throughout the world, NAO could detect any virus or invasive organism
undergoing exponential growth whose nucleic acids end up in the water, even those previously unknown to
science. Continuously monitoring nucleic acid diversity would provide us with universal early warning,
obviate subtle bioweapons, and generate a wealth of sequence data sufficient to transform ecology,
microbiology, and conservation. We call for the immediate construction of a global NAO to defend and
illuminate planetary health.
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Introduction

The SARS-CoV-2 pandemic has demonstrated our profound vulnerability to exponentially spreading
viruses. Even though the first cases were estimated to have occurred in November or possibly October1, they
were not detected until December2. Had governments acted just a few weeks earlier, the virus may have been
excluded from many more countries or even eradicated before becoming a global pandemic, as was
accomplished for SARS-CoV-1 in 20033 and Ebola in 2014-20154,5. Notably, those places that responded
swiftly and aggressively to SARS-CoV-2 fared best early on, including New Zealand, Vietnam, China, South
Korea, and Australia6. When an enemy can spread exponentially, an early detection and response requires
exponentially fewer resources to achieve containment and eradication.

The same logic holds for invasive species, which devastate natural ecosystems and cause immense
damage to the agriculture and forestry sectors7. Invasions were estimated to cost an inflation-adjusted $54
billion per year in the United States8 and a minimum of $47-$163 billion worldwide, with costs roughly
doubling every six years from 1970-20179. The U.S. and China have the most to lose from future invasions10.
Analyses of containment and eradication programs targeting 136 invasive plants11,12 and 130 insects13

consistently found that the larger the geographic area of the infestation, the lower the odds of success 14. The
ease of detecting the target pest was one of the most critical factors associated with eradication success.

These dynamics underscore the importance of early warning systems to contain and eradicate
biological invasives. Pandemic viruses and pests share one critical feature with all other living things: their
genomes are made of nucleic acids. In every region of the world, these fragments of DNA and RNA are washed
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into local bodies of water, where new techniques have begun to permit their reliable detection15,16.
SARS-CoV-2 has been detected in wastewater days before the first clinical cases being reported in
surrounding communities17; wastewater sequencing has even detected and identified variants of the
virus18–21 as well as many other viruses22–29 and antibiotic resistance genes30. Laboratories using
metagenomic sequencing to analyze samples of river water have successfully detected signatures of species
from throughout the associated watershed15, including terrestrial macrofauna16, and can distinguish between
closely related species31 (Fig. 1). Even low-throughput metagenomic sequencing can detect spiked-in samples
of pathogen DNA in less than 8 hours32,33. While most of these studies suggest that shotgun metagenomics
alone has a higher limit of detection relative to quantitative PCR, there are exceptions in both environmental
34,35 and clinical samples36,37, and it is widely agreed that performing parallel unbiased and target-specific
amplification before sequencing can confer qPCR-level sensitivity to specific sequences of interest while
maintaining the ability to detect previously unknown agents38,39 or strains with mutations in commonly used
RT-PCR primer binding sites22. Therefore, a system that combines unbiased amplification to detect previously
unknown or foreign biological agents with more sensitive monitoring of particular species of concern from
both wastewater and natural waterways appears to offer the best of both worlds (Fig. 2).

The case study dramatizing the importance of early detection used a much older technology: in 2013,
Israel’s poliovirus-specific environmental monitoring program detected a nascent outbreak in wastewater
samples from the town of Rahat using plaque assays and swiftly initiated mass oral vaccination, eliminating
the virus before even a single child came down with paralytic symptoms40. Today, we have the potential to
detect any virus or invasive species, even novel pandemic-class agents unknown to science, through the
comprehensive metagenomic sequencing of waterways. Here we propose to build a Nucleic Acid Observatory
to continuously monitor the global environment for past, present, and future pandemic viruses and invasive
pests.

Figure 1 | Watershed and wastewater metagenomic sequencing can detect pandemic viruses, invasive species, and
engineered genes while monitoring the populations of different species. Sampling at site A detects nucleic acids from
the entire watershed, including agricultural and rural regions; upstream sampling at B, C, D can pinpoint sources.
Sequencing at M monitors the health of the marine ecosystem, while wastewater sequencing at W can sensitively detect
human-specific pathogens.
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Figure 2 | Overview of sample processing, sequencing, and analysis. Processed samples are sequenced with and without
targeted amplification of known agents.  Unbiased sequencing can detect any exponential threat by monitoring the
abundance of different k-mer fragments over time. The k-mers comprising any exponentially growing biological agent
will increase in frequency as a group, permitting identification of the agent. Once identified, the threat can be added to
the list of targets for sequence-specific amplification or enrichment, which will maximize sensitivity and immediately
determine whether the new threat is present at any other sites of the Observatory. Targeted sequencing of stored
samples could determine the time of introduction to any given site, aiding subsequent investigations. Alternative
sequence-specific detection methods such as RT-PCR or LAMP may be used as appropriate.

Biodefense

The world’s demonstrated vulnerability to SARS-CoV-2 appears reason enough to invest in a
comprehensive early-warning system. The United States has lost more citizens to the pandemic than it has in
all military conflicts in the past century, yet it devotes less than 1% of its defense budget to biodefense41.
Indeed, not a single line of the nearly $700 billion 2020 defense appropriations bill mentioned anything
biological42. Most of the small investment in biosecurity is focused on anthrax and other chemical weapon
equivalents, whose theoretical worst-case tolls are orders of magnitude lower than those of pandemics and
other autonomously spreading pathogens while being far less accessible due to the need for a sophisticated
aerosol delivery system43,44.

Agriculture and natural ecosystems are equally, if not more, susceptible to autonomous pathogens.
Historical fungal blights afflicting staple crops have led to massive famines in the past, most infamously in
Ireland; many still cause tremendous losses today45. Concerted outbreaks afflicting multiple crops could be
devastating for the world, especially given our increasing reliance on near-monocultures46. Livestock can also
suffer: the ~1% case fatality rate of SARS-COV-2 is dwarfed by the 80-100% lethality of African swine fever in
pigs47. An estimated 13-27% of all the world’s swine were lost to the 2018-2019 outbreak48.

For the moment, we largely lack the capacity to engineer biological agents capable of spreading
invasively in the wild. The sole current exception, CRISPR-based gene drive technologies capable of editing
populations of sexually reproducing organisms49, underscores the critical importance of a Nucleic Acid
Observatory. Relative to viruses, gene drive systems are slower to spread and far more reliably countered50,
as any given example can be overwritten by building and releasing a corresponding "immunizing reversal"
drive system49,51. Even so, a harmful drive system could cause tremendous damage if permitted to grow
exponentially; for some species, individuals with relevant technical skills could build and release such a
construct single-handedly. Genome sequencing, whether of at-risk organisms or of metagenomes, appears to
be the only reliable method of detecting engineered gene drive systems in the environment, and is therefore
required for defense. Despite defense projects aimed at sensitively detecting engineered sequences in the
environment52, no such system has been constructed at scale.

The possibility that individuals could single-handedly edit wild species had never been previously
imagined before the invention of CRISPR-based gene drive, raising the unsettling possibility that we may
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stumble upon similarly unanticipated ways of engineering exponential spread. Even if the unknown
unknowns prove harmless, a number of emerging threats are clearly visible today. For example, several
current avenues of research promise to identify publicly53–55 and reveal ways to enhance and weaponize
potentially pandemic viruses either deliberately56 or by better understanding factors governing
transmissibility57 or immune evasion58. Such agents would be less readily countered than would a gene drive
construct59,60. Constructing an early warning system could simultaneously deter attack and maximize the
time available for defenders to develop and apply suitable countermeasures.

To be effective, monitoring systems should not rely on any particular phenotype, symptom profile, or
sequence to be present in future natural outbreaks or bioweapons. Since very few viruses have been
sequenced to date, detection systems based on known sequences may not be sensitive to future pandemic
agents61. For example, multiplexed CRISPR-based diagnostics capable of detecting all current human
pathogens have tremendous medical potential62, but they could miss future zoonotic agents. Older systems
attempting to detect aerosolized agents63 are similarly limited to known threats, although they could be
upgraded by applying metagenomic sequencing. Most importantly, any remotely sophisticated adversary
would deliberately engineer a biological weapon to lack the sequences detected by any pre-existing
diagnostics and defenses.

In contrast, the only way to evade detection by shotgun metagenomic sequencing would be to
somehow engineer a pathogen that entirely lacks sequence-amenable nucleic acids in its genome. Since all
known living organisms possess genomes that can be sequenced with current technologies and all nucleic
acids present in the environment are thought to be detectable in the water15,64, analyses searching for
sequences diverging from historical baselines could sensitively detect nucleic acids from any biological
construct exhibiting exponential growth. As such, a Nucleic Acid Observatory could reliably detect any and all
subtle pandemic viruses, bioweapons, or other autonomous biological agents targeting humans, agriculture,
or natural ecosystems within days or weeks of introduction.

Conservation

Invasive species are a primary cause of extinction of native species around the world65–67. Any
waterway-based metagenomic sequencing system capable of reliably detecting a pandemic virus or
CRISPR-based gene drive system in a terrestrial organism living in the associated watershed should also be
capable of detecting invasive species. Consider forests. The American chestnut was once the most common
tree in North America; thanks to the invasive chestnut blight, it is nearly extinct. Other species have been
devastated or are threatened by other agents such as Dutch elm disease, the emerald ash borer, Asian
longhorned beetle, hemlock woolly adelgid, the gypsy moth, Rapid Ohi’a Death, and more14,68,69. Even farmed
trees are vulnerable; citrus greening disease has destroyed the orange industry in Florida, costing the state
34,000 jobs70. Assuming that future invasions would be equivalently costly10, the NAO could nearly pay for
itself simply by enabling detection and eradication before they become widespread.

In addition to detecting invasive species, environmental DNA in rivers can provide information on the
abundance of native species, including terrestrial mammals71. Such methods have helped scientists monitor
numerous endangered species72–75, including those that are challenging to track76,77. In aquatic environments,
metagenomic sequencing was demonstrated to be superior to all conventional methods for species
tracking78. A weekly census of species occupancy and abundance in environments could direct conservation
resources more efficiently, and may be particularly relevant to assisting species imperiled by climate change.

A key question is whether shotgun metagenomics can monitor abundance as effectively as the
metabarcoding more commonly used to detect particular marker genes in eukaryota. Recent studies suggest
that the metagenomics approaches commonly used by microbial ecologists are nearly as sensitive79. In
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addition, sufficiently deep metagenomic sequencing permits the direct monitoring of genetic diversity within
populations, which is widely considered a better metric of species robustness than simple abundance80–84.

Science

The environmental sequencing of waterways has revealed that a large fraction to an overwhelming
majority of sequences of nucleic acids in the environment are not found in current repositories27,85–87. In other
words, much of life remains entirely unknown to us.

The scientific benefits of sequencing most of the remaining genetic diversity on Earth would extend
far beyond conservation; indeed, they are difficult to describe without superlatives. Microbial and
macrofaunal ecology, population genetics, geochemistry, evolutionary biology, and many more disciplines
would be utterly transformed by such a treasure trove of data. Virtually all of the tangible benefits arising
from biological research were enabled or inspired by natural systems, from vaccines to antibiotics, aspirin to
insulin, and genetic engineering, DNA sequencing, PCR and CRISPR. Sequence most living things, and we can
reasonably expect to discover many more tools that may become pillars of biotechnology and medicine.

While the anticipated scientific benefits of a one-time spatial survey of genomic abundance and
diversity would be staggering, the Nucleic Acid Observatory would go beyond a single snapshot by
monitoring genetic diversity throughout the world for an extended time88. Large spatial and temporal series
are considered the gold standard for ecological and evolutionary studies, but are seldom collected due to the
considerable expense relative to the typically small funding streams available for ecological studies. For
example, the entire U.S. National Ecological Observatory Network was funded for $434 million89, which is a
rounding error compared to the cost of COVID-19 ($5.73 trillion in relief bills passed by the U.S. Congress
alone) and the $3.2-$16 trillion estimated cost of the pandemic 90,91. If implemented in an even moderately
standardized manner, the NAO would generate far and away the most comprehensive and useful ecological
dataset ever collected.

Technical options

On a high level, the Nucleic Acid Observatory would involve extracting nucleic acids from filters or
concentrated water samples from rivers and sewage systems at many sites throughout the world, selectively
amplifying any known sequences of concern that may be present, conducting metagenomic sequencing to
generate snapshots of the nucleic acid diversity on that day27, performing bioinformatic analyses to screen for
novel sequences that have become exponentially more common relative to past snapshots, then assembling
those sequences to identify the responsible organism or virus. Each of these steps can be economically and
technically optimized.

Experimental strategies

There are a variety of sampling methods that should be evaluated to determine which combinations
are optimal for cost-effectiveness at different depths and breadths of threat coverage. Sample collection
routinely employs artificial filters, generally developed for medical use and adapted to environmental
purposes to concentrate nucleic acids64,92–94. More recent developments include the use of passive samplers to
which eDNA will bind95 and aquatic organisms that naturally concentrate exogenous DNA that can be
cultivated and harvested, such as filter-feeding sponges, shellfish and other organisms96, with the caveat that
concentrations of bivalves may or may not substantially reduce the total concentration of eDNA97,98 and the
net dynamics of eDNA movement determinants in marine environments remain to be established98. Finally,
the use of settlement plates and centrifugal concentration of water samples may also have utility in some
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settings64. Each approach has strengths and limitations. Artificial filters require periodic replacement and
once samples are collected then storage may be challenging. Some automation of both approaches has been
achieved in field deployable remote automated underwater vehicles and there is significant capacity to
improve this further99. Living filters such as mussels and other shellfish also concentrate exogenous nucleic
acids and may be suitable for monitoring, including some in pre-existing populations, but this concept
remains very much in early development96,100.

Once concentrated and extracted, nucleic acids are typically selectively or indiscriminately amplified
by one of several methods101. For the Nucleic Acid Observatory, selective and unbiased approaches would be
used in parallel to sensitively detect known sequences of interest while retaining the ability to identify
previously unknown sequences that are exponentially increasing in abundance.

Different combinations of sampling, filtering, extraction, and amplification methods differ in which
source organisms and sequences they are able to detect15,18,19,102–104. Therefore several distinct methods
should be used at each testing site to ensure coverage of diverse threats. For example, three protocols may be
used to target DNA from cellular organisms, viral and cell-free DNA, and viral and cell-free RNA.

Once amplified, samples may be shotgun sequenced by short or long-read sequencing, or both.
Short-read sequencing based on Illumina technology is currently the most cost-effective on a per-read basis
and consequently offers the greatest sensitivity, meaning it may be optimal for wastewater105. Nanopore
sequencing offers much longer reads, superior recognition of gene drive systems and other constructs that
combine elements normally never found adjacent to one another, and the ability to sequence DNA containing
non-standard bases such as the newly discovered aminoadenine106–108. It can also sequence RNA directly,
offering a means of monitoring RNA viruses without reverse transcription109,110. Recent advances enabling
adaptive nanopore sequencing to better detect low-abundance samples may allow it to approach the
sensitivity of short-read sequencing111. For all methods, samples from different sites can be shipped to a
single central laboratory located elsewhere, barcoded, and subjected to pooled sequencing112. Nanopore
sequencing, which offers portable sequencing in remote environments, may be required in any areas where
sample stability and logistics do not permit shipment.

Sequencing costs for both short and long-read sequencing have dropped considerably faster than
Moore's Law (Fig. 3), a trend that looks set to continue given a variety of early-stage alternatives to current
practice113. Therefore, the efficacy of a NAO can reasonably be expected to grow with time.

Figure 3 | Historical cost of sequencing one million base pairs of DNA. Adopted from NHGRI114.
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Computational strategies

Once samples are collected and sequenced, the resulting data must then be bioinformatically
analyzed and interpreted. Distinct strategies are needed to monitor known versus unknown threats. Known
threats—agents or genetic elements with known sequences—can be detected by mapping sequencing reads
(or their protein translations) to databases of reference sequences115–117 or by using classification, prediction,
or screening methods derived from such databases116,118. Such databases and methods have been used to
detect federally-designated select agents, human pathogens, genetically engineered elements, and bacterial
genes associated with toxin production and antimicrobial resistance30,115,116,119–121. Once a new threat is
discovered and sequenced anywhere in the world, such as when SARS-CoV-2 was first sequenced in China in
January of 2020 122, its presence can be monitored at all NAO testing sites. The number of reads mapped to a
threat can also be used to quantitatively track its abundance through time by using comparisons to stable,
common organisms like pepper mild mottle virus to convert counts to calibrated abundances across
samples123. Comprehensive taxonomic profiling of specific groups or even all known species117,118,124 can also
be used to monitor for unusual deviations from a testing site’s typical profile. Finally, mutational variants in a
specific organism of interest can be monitored by aligning reads to its reference sequence, as recently used to
track SARS-CoV-2 variants in wastewater18,19.

However, such reference-based approaches are ill-suited to detecting a truly novel threat whose
sequence is not known a priori. For these unknown threats, we suggest employing a reference-free strategy
that looks for signatures from arbitrary sequences that have begun to exponentially increase in frequency at
a given location. A signature currently used by reference-free methods for studying variation in human
genomic data125–127 and bacterial metagenomic data128,129 are k-mers—sequences that are k base pairs long.
K-mers ranging from ~30 to 40 base pairs in length are typically used because they are highly specific to the
source sequence while remaining derivable directly from short sequence reads with little chance of
sequencing error. An adaptation of these methods to detect increasing frequencies of sequences at a given
testing location might count the occurrences of each k-mer in each new sample, then perform a statistical test
to determine whether each k-mer has begun to exponentially increase in relative abundance compared to
housekeeping reference genes at a recent point in time. Increasing k-mers that overlap can be assembled into
longer sequences130,131. K-mers or assembled sequences may be matched to their containing organisms by
mapping to reference databases or used to design primers for targeted amplification of the surrounding
sequence132,133. Variations on this basic approach should be explored and may each be more or less sensitive
to distinct threats.

Additional bioinformatic analyses that may prove useful for detecting emerging threats include
metagenome assembly methods117 to generate reference genomes for the “microbial dark matter” that is
absent from existing databases, creating a “pan-genome” of all sequences134 that are found under normal
circumstances at a given testing site, and cloud-based pipelines for pathogen detection and taxonomic
identification135.

Computational challenges

The NAO will generate a wealth of environmental sequencing data that will vastly supersede what is
currently available. As described above, this data holds great promise for transforming ecology, microbiology,
and conservation biology; but its sheer volume poses technical and operational challenges in facilitating its
use. Ongoing declines in the cost of hard drives and other storage technologies mean that storing the data in
“cold storage” presents only a marginal cost increase over the basal cost of sequencing (Supplementary
Tables 1-4). The primary challenge will involve making the data from thousands of testing sites available to
the scientific community. For this purpose, we propose storing a small, strategically chosen subset of the data
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in a cloud computing platform, from which users can download the data or operate on it directly by
purchasing computing resources in the cloud environment136. A possible subsetting strategy is to store all of
the most recent week’s data but just weekly or monthly snapshots for later periods. The methods used to
generate the data by various “collectors” (see below) may vary in space and time, making it essential to keep
detailed metadata to allow researchers to account for this methodological variation in their analyses136.

Operations

Nations could adopt a variety of approaches to implement their own Nucleic Acid Observatory, from
government-run to entirely outsourced. However, all successful operations will incentivize the reliable
detection of rare nucleic acid sequences. In security, quality control is assured by consistently challenging the
defenses. In this Observatory context, adequate sensitivity might be assured by employing “red teams” to
simulate attacks by introducing foreign nucleic acids at various levels without informing those in charge of
sample collection and sequencing.

Specifically, each monitoring site will necessarily be frequented by collectors tasked with acquiring
and sequencing samples. These are members of the “blue team”, whose job is to defend the area by swiftly
detecting any invasive sequences. To ensure detection is sufficiently sensitive and reliable, “red team”
inspectors frequently challenge the defenses by releasing known amounts of foreign DNA or RNA into the
environment within each watershed or sewer system. Incentives of collectors should be tied to their success
or failure to detect these foreign sequences, while inspectors should be incentivized to accurately quantify
the sensitivity and identify flaws. Ideally, each site will be monitored by at least two competing organizations
of sample collectors (whether private, public, or military) and be challenged by at least two competing
organizations of inspectors, with incentives to discourage collusion.

The resulting competition would encourage innovation seeking greater cost-effectiveness in sample
acquisition, processing, and sequencing approaches while enhancing sensitivity. For example, the
establishment phase of a NAO could see different groups exploring various collection methods, sampling
frequencies, and intensities to determine which approaches can offer the most sensitive and comprehensive
monitoring.

Cost, healthcare, and privacy

The cost of a Nucleic Acid Observatory will depend on the desired sensitivity for different nucleic
acids and the benefits of scaling, but our back-of-the-envelope calculations estimate a total annual cost of
$700 million for a pilot system monitoring wastewater from all 328 U.S. Ports of Entry and all 378 major
USGS-designated water basins, in addition to one-time system setup expenses. For a complete system that
would additionally monitor all major U.S. towns and cities, most international airports, and either the 378
water basins or all 2278 designated watersheds, we estimate a total annual cost of $5-15 billion annually
(Supplementary Tables 1-4). Given the annual damages inflicted by invasive pests and especially by
COVID-19, this looks like a remarkable bargain, one that would additionally boost employment throughout
the nation (Supplementary Information Executive Summary). Other nations could enjoy similar benefits.

Sample acquisition, processing, and sequencing represent the bulk of the estimated costs, with data
storage and analysis being comparatively less expensive. These costs could potentially be reduced by
adapting improvements from clinical sequencing such as superior sample barcoding112 and optimization of
filter use, sample storage, and amplification techniques. Most importantly, overall costs are expected to
continue to decline faster than Moore’s Law with the price of sequencing (Fig. 3). As the entire global DNA
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sequencing market was estimated at only $8-12 billion in 2020-21, investing these sums should achieve
substantial bulk efficiencies and discounts.

Accelerating the reduction of sequencing costs will offer synergistic benefits with clinical sequencing
for healthcare applications. Indeed, sufficiently widespread sequencing of patient samples could plausibly
substitute for wastewater sequencing in detecting human pathogens. Wastewater sequencing is somewhat
more cost-effective than sequencing many clinical samples, but the primary advantage of wastewater
sequencing to detect human pathogens is that it preserves privacy.

Whereas sequencing a clinical sample necessarily acquires data allowing genomic identification of
the patient, the mixing of many samples in sewage precludes the identification of specific human genomes
and the potential disclosure of any health, relationship, or location information. Laws and regulations
requiring consent forms tightly constrain precisely what can be done with information obtained from clinical
samples. In contrast, the anonymity of environmentally collected data would allow a NAO focused on
wastewater and waterways to begin monitoring for any and all harmful invasives – not just those directly
attacking humans – sooner rather than later.

Conclusion

The NAO would tell us when to act when we are confronted with an emerging pandemic or other
exponentially spreading biothreat. It will create a genome repository for virtually all life on Earth, give us
contemporary snapshots of species health, and eventually, an historical record of ecological changes. The
time to build it is now.
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Supplementary Tables

Assumed parameters Notes

Sequencing machine cost $600,000 Will shrink with future technologies

Sequencing run cost $1,500

Reagents are highly profitable for manufacturers. Current

cost for NovaSeq at a sequencing core is ~$4k; this

number assumes a large scaling discount and normal

yearly cost reduction by the time of implementation.

Reads per machine run 2.00E+09 Parameter of sequencer.

Bits per machine run 4.00E+11 Parameter of sequencer

Days per machine run 1.2 Parameter of sequencer, and of read length

Reads needed per sample 1.00E+09

This review; can tradeoff with number of samples per site

to some extent

Samples needed per site per day 3

Airport wastewater is lower volume, therefore fewer

reads needed than a city; assume 1/5

Sites needed in U.S. 328

Total yearly salary per site $100,000 1 person per site at $100k/year/person on average

Data storage cost per terabyte $10 Reasonable by the time this is available

Rent per year per 10 sites $500,000

Assume labs are in expensive cities, but some

consolidation through shipping is possible. 365 large

packages overnight << $500k per year.

Filters and sample prep costs per sample $20 Uncertain of scaling; rough estimate

Derived parameters

Machines needed per site 1.80E+00

Machines needed total 5.90E+02

Investment for waterway tech development $100,000,000

Up front cost $454,240,000

Yearly sequencing reagent/run cost total $269,370,000

Yearly filters or other sample prep cost total $7,183,200

Yearly salary total $32,800,000

Yearly data storage total $89,790

Yearly rent total $16,400,000

Ongoing yearly running cost estimate $325,842,990

Supplementary Table 1 | Rough estimated cost of a pilot Nucleic Acid Observatory to sequence wastewater from all
328 Ports of Entry in the United States. Assumes use of Illumina Novaseq or equivalent. Costs will decline as sequencing
technology continues to improve.

https://journals.sagepub.com/doi/10.1177/0036850419881855


Assumed parameters Notes

Sequencing machine cost $600,000 Will shrink with future technologies

Sequencing run cost $1,500

Reagents are highly profitable for manufacturers.

Current cost for NovaSeq at a sequencing core is ~$4k;

this number assumes a large scaling discount and normal

yearly cost reduction by the time of implementation.

Reads per machine run 2.00E+09 Parameter of sequencer.

Bits per machine run 4.00E+11 Parameter of sequencer

Days per machine run 1.2 Parameter of sequencer, and of read length

Reads needed per sample 1.00E+09

This review; can tradeoff with number of samples per site

to some extent

Samples needed per site per day 3

Airport wastewater is lower volume, therefore fewer

reads needed than a city; assume 1/5

Sites needed in U.S. 706 328 Ports of Entry + 378 USGS water basins

Total yearly salary per site $100,000 1 person per site at $100k/year/person on average

Data storage cost per terabyte $10 Reasonable by the time this is available

Rent per year per 10 sites $500,000

Assume labs are in expensive cities, but some

consolidation through shipping is possible. 365 large

packages overnight << $500k per year.

Filters and sample prep costs per sample $20 Uncertain of scaling; rough estimate

Derived parameters

Machines needed per site 1.80E+00

Machines needed total 1.27E+03

Up front sequencing machine cost $762,480,000

Yearly sequencing reagent/run cost total $579,802,500

Yearly filters or other sample prep cost total $15,461,400

Yearly salary total $70,600,000

Yearly data storage total $193,268

Yearly rent total $35,300,000

Ongoing yearly running cost estimate $701,357,168

Supplementary Table 2 | Rough estimated cost of a pilot Nucleic Acid Observatory to sequence wastewater from all
328 Ports of Entry in the United States as well as water from the 378 USGS-designated water basins. Costs will decline
as sequencing technology continues to improve.

https://journals.sagepub.com/doi/10.1177/0036850419881855


Assumed parameters Notes

Sequencing machine cost $600,000 Will shrink with future technologies

Sequencing run cost $900

Reagents are highly profitable for manufacturers.

Current cost for NovaSeq at a sequencing core is ~$4k;

this number assumes a large scaling discount and

normal yearly cost reduction by the time of

implementation.

Reads per machine run 2.00E+09 Parameter of sequencer.

Bits per machine run 4.00E+11 Parameter of sequencer

Days per machine run 1.2 Parameter of sequencer, and of read length

Reads needed per sample 1.00E+09

This review; can tradeoff with number of samples per

site to some extent

Samples needed per site per day 10

Smaller sites will require fewer, big cities/rivers need

more; assume this is an average. Also trades off with

number of reads per sample.

Sites needed in world 1470

Total yearly salary per site $250,000 1 person per site at $100k/year/person on average

Data storage cost per terabyte $10 Reasonable by the time this is available

Rent per year per 10 sites $500,000

Assume labs are in expensive cities, but some

consolidation through shipping is possible. 365 large

packages overnight << $500k per year.

Filters and sample prep costs per sample $20 Uncertain of scaling; rough estimate

Derived parameters

Machines needed per site 6.00E+00

Machines needed total 8.82E+03

Up front sequencing machine cost $5,292,000,000

Yearly sequencing reagent/run cost total $2,414,475,000

Yearly filters or other sample prep cost total $107,310,000

Yearly salary total $367,500,000

Yearly data storage total $1,341,375

Yearly rent total $73,500,000

Ongoing yearly running cost estimate $2,964,126,375

Supplementary Table 3 | Rough estimated cost of a Nucleic Acid Observatory to sequence wastewater from all 328 U.S.
Ports of Entry, water from the 378 USGS-designated water basins, wastewater from the 314 cities over 100,000 people,
and wastewater from the 450 international airports with flights to the United States. Initial costs could be reduced by
performing exclusively targeted sequencing at some days and sites, and will decline as sequencing technology continues
to improve.

https://journals.sagepub.com/doi/10.1177/0036850419881855


Assumed parameters Notes

Sequencing machine cost $600,000 Will shrink with future technologies

Sequencing run cost $900

Reagents are highly profitable for manufacturers.

Current cost for NovaSeq at a sequencing core is

~$4k; this number assumes a large scaling discount

and normal yearly cost reduction by the time of

implementation.

Reads per machine run 2.00E+09 Parameter of sequencer.

Bits per machine run 4.00E+11 Parameter of sequencer

Days per machine run 1.2 Parameter of sequencer, and of read length

Reads needed per sample 1.00E+09

This review; can tradeoff with number of samples per

site to some extent

Samples needed per site per day 10

Smaller sites will require fewer, big cities/rivers need

more; assume this is an average. Also trades off with

number of reads per sample.

Sites needed in world 5013

Total yearly salary per site $250,000 1 person per site at $100k/year/person on average

Data storage cost per terabyte $10 Reasonable by the time this is available

Rent per year per 10 sites $500,000

Assume labs are in expensive cities, but some

consolidation through shipping is possible. 365 large

packages overnight << $500k per year.

Filters and sample prep costs per sample $20 Uncertain of scaling; rough estimate

Derived parameters

Machines needed per site 6.00E+00

Machines needed total 3.01E+04

Up front sequencing machine cost $18,046,800,000

Yearly sequencing reagent/run cost total $8,233,852,500

Yearly filters or other sample prep cost total $365,949,000

Yearly salary total $1,253,250,000

Yearly data storage total $4,574,363

Yearly rent total $250,650,000

Ongoing yearly running cost estimate $10,108,275,863

About the estimated size of the sequencing industry if

current trends continue until ~2026

Supplementary Table 4 | Rough estimated cost of a Nucleic Acid Observatory to sequence wastewater from all 328 U.S.
Ports of Entry, water from all 2264 USGS-designated watersheds, and wastewater from the 1521 towns and cities with
over 25,000 people as well as the 900 major international airports.  Initial costs could be reduced by performing
exclusively targeted sequencing at some days and sites, and will decline as sequencing technology continues to improve.

https://journals.sagepub.com/doi/10.1177/0036850419881855


Nucleic Acid Observatory

Executive Summary

The United States lost over 600,000 Americans and trillions of dollars to COVID-19.

● Early detection is critical to controlling exponentially growing biological threats

● Future natural and engineered threats to humans and ecosystems are highly likely

● Intensive environmental DNA sequencing can detect all such threats

● Sequencing wastewater and natural waterways does not endanger genetic privacy

Phase I: Pilot study on vulnerable sites (immediate)

● $700m per year for 3 years, +$760m initial setup, that will sequence:

○ daily wastewater samples from all 328 CBP Ports of Entry ($325m annually + $350m setup)

○ biweekly samples from all 378 USGS water basins ($375m annually + $410m setup)

Phase II: Nucleic Acid Observatory (beginning in 2023)

● $3.0b per year, +$5.3b initial setup, for deeper sequencing of daily samples from:

○ all 328 Ports of Entry

○ all 378 water basins

○ all 314 U.S. cities over 100,000 people

○ 450 international airports with flights to the United States

● $10.4b per yr, +$18.4b setup, for deeper sequencing of daily samples from:

○ all 328 Ports of Entry

○ all 2264 watersheds

○ all 1521 U.S. towns over 25,000 people

○ 900 international airports

Side benefits for agriculture, science, and the environment:

● Invasive pests costing billions per year can be detected early enough for eradication

● Deep sequencing will unearth new molecules for the biotech industry

● Sequencing waterways can monitor the abundance of all species

Sensitivity should more than double every two years:

● DNA sequencing costs have fallen a billion-fold over twenty years

● The rate of improvement recently slowed to ‘only’ the level of Moore’s Law

● At current rates, the sensitivity of the system will double each year

● NAO would double the size of the sequencing market, catalyzing further acceleration

Defends against pandemics and biological weapons engineered to be subtle:

● All living things can be detected with sufficiently deep sequencing

● Searching for sequences that swiftly become more common can detect all threats

https://www.cbp.gov/border-security/ports-entry

